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Abstract. We consider a two-dimensional diffusion process Zlt) =

[Z1(t),Z 2(t)] that lives In the half strip (0 < Z1 <1, 0 < < *}. On

the Interior of this state space, Z behaves like a standard Brownian

motion (indpendent components with ze drift and unit varianoe), and there

is Instantaneous reflection at the boundary. The reflection is In a

direction normal to the boundary at Z1 a I and Z2 = 0, but at Z1= 0

the reflection is at an angle S below the normal (0 < e < %/2).

This process Z Is shown to arise as the diffusion limit of a certain

tandem storage or queueing system. It is shown that Z(t) has a

non-defective limit distribution F as t . -, and the marginal

distributions of F are computed explicitly. The marginal limit

distribution for ZI Is uniform (this result is essentially trivial),

but that for Z2  Is much more complicatod.
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A Tandem Storage System and Its Diffusion Limit

3. Michael Harrison
Stanford University

L.A. Shepp
Bell Laboratories

1. Introduction and Suarwy

This paper Is concerned with approximate analysis of a certain

discrete-time storage process. The physical system giving rise to

this two-dimensional process is pictured In Figure 1 below. It consists of

a buffer (or dam or reservoir) having finite capacity b, followed by

another buffer having infinite capacity. We denote by and the

contents of the finite buffer and the infinite buffer respectively at time

't a 0, 1, ... . Imposing very particular assumptions on the input process

to the first buffer, the transfer process between buffers, and the output

process from the second buffer, we study here the approximate behavior of

the storage process S = (St, S2) as b + -. To be more specific, let us

define a continuous-time process S(t) z [S(t), S;(t)] by setting

1S2
(1.1) S;t E b t3 and i(t) 5 2

b (b2t] [b t

for t > 0, where Ex] denotes the integer part of x (the largest

integer less than or equal to x). There Is a two-dimensional diffusion

process Z such that SO converges weakly to Z as b . -, and we would

like to determine the steady-state behavior of Z.

I 1
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At the boundary, Z reflects Instantaneously. On the sides Z1 = 1 and

z= 0 w have what Is called normal reflection. On the side Z= 0

there Is oblique reflection In the direction pictured In Figure 2, where

a- 1/a and a2 is the variance parameter Introduced in Figure 1. The

precise meaning of this boundary behavior will be explained in 13. In 14

It will be shown that P{Z(t) < y) F(y) as t+, where F is a non-

defective distrlbtion on the strip E, and this limit distribution (or

steady-state distribution) will be show to satisfy a

Z2

:-' Z1

'a

': 0

oO.

Figure 2. State Space E and Angles of Reflection

for the Diffusion Umit Z

certain adjoint relation. Using this adjoint relation and Wiener-Hopf

"* techniques# we calculate the marginal distributions of F In 15.

The marginal steady-state distribution of ZI is uniform, which

follows Imediately from the fact that Z1 is a one-dimensional standard

3



Brownian motion constrained to [0,1] by reflecting barriers. But the

marginal steady-state distribution of Z2 ,

",G(C) a F11,19C , u> 0 ,

Is much more complex. Lot

(1.2) c v r(1 - -)Ir(1 29) r(l) ,

(1.3) plul eeU(1 - e'U)2e/ , u > 0 ,

where - tan- 1 a as In Figure 2, and r(*) is the standard gamma

function

r (s) f '"t ds - > 0

0

It will be shown that cp(u) Is a probability density function on (0,-)

with mean l/a, and that this distribution describes the asymptotic

behavior of a certain increasing process associated with the boundary

Z= 0. Our main result Is the following.

(1.4) Theorem. C(dC) - g(C)dC where g(C) a cp(u)du.

From (1.4) It follows that the steady-state marginal distribution C has

Laplace transform

;24



transfer between the two buffers. As a convenient normalization we can

assame that Var(u ) z 1, and then we set 2 Var(u ). These notational

conventions are also displayed in Figure 1. For simplicity we take

S Ot0 meaning that both buffers are Initially empty.

The content process for the finite buffer is now defined inductively

by

1 0 1

(2.3) S . ;i+utut If 0 < S. +u Ut°< b

1b, If S- 1 +u ui >b

for t = 1, 2, ... This Is of course the standard construction for the

content process of a finite dam in discrete time [6]. Actual input to the

dam during period t may be less than the full potential input u0

because of the capacity restriction, and actual output may similarly be

Iless than the full potential output ut because of the restriction

$1 > 0. Defining
2 -

1. 0 1(2.4) x Z u Ut

(2.5) y 0 Z SI + X1 -b+

and

(2.6) y t S t-1 +xt3

during period t. and y t represents lost potential output from the finite

buffer, which amounts to lost potential transfer between the two buffers

6
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buffer, which amounts to lost potential transfer between the two buffers

pictured In Figure 1. That Is, actual input to the finite buffer during

0 0period t is ut-yt, actual transfer between the two buffers during period
1 1

t Is ut-yt, and (2.3) is equivalent to (2.4)-(2.6) plus

(2.7) x+ 

for t = 1, 2, .... Having established that the actual Input to the
1 1

infinite buffer during period t is ut - yt, we can define the content

process for the Infinite buffer Inductively by setting

S 2 1 1 2 If 2 1 1- 2>si I Ut t ut if +, t

(2.8) St Y

0 otherwise

for t = 1, 2, .... Defining
2 1 2

(2.9) xt 
= ut -u t

(2.10) 2 2 2 1
(2.1) [St. 1 + xt  yt ] ,

2we see that y t  represents lost potential output from the infinite buffer

during period t. That is, actual output during period t Is u2 2  and
t-Yt'

(2.8) Is equivalent to (2.9)-(2.10) plus

(2.11) S"- 2  Yt + Yt for t = 1, 2,

To derive an equivalent and very useful characterization of the

storage process S, let us define the cumulative quantities

7
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(2.12) Xt 1 + Xt , for t Op0 1, .. and k IV 21, 2

(2.13) Y + **° + Yt for t =, 2, ... and k = 0, 1, 2,

with X k =v 0. By summing (2.7) and (2.11) over periods 1, ... , t we

have

(2.1,) 1 - X 1 +Y 1  0
ti t t t

"2 X2 +Yt 1,(2.15) st = xt + - Y
St t t t

for t 0, 1, .... By construction we have

(2.16) 0< < b and Si 0 for t=O, 1,...

and one can easily verify that

(2.17) S1&Y z= (b-St) = t 0 for t =1, 2, ,,,,

where aY =  v- = yk* Obviously (2.16) and (2.17) together require

1 0,ta Ay0 =0 S 1 =b,and
that AY = 0 except when S-, that exceptwhnS pa

that AY2 =0 except when 0

We now define the normalized continuous-time storage process

?(t) - ESl(t), S by applying to S the transformation (1.1). In a

similar vein, le X*(t) = [X*(t),X2(t)] and Y*(t) = [Yo(t),Y*(t),Y2(t)

be defined by

[b2t] ' 2
[ [bt]



K>;
(2.19) Wt I YO I *t Y(t 1 ~ 2

2
S[b t3 1 b~t 2 bt]

for t > 0. Obviously X* Is right-continuous with left-hand limits

(RCLL), and from (2.7), (2.11), and (2.14)-(2.17) It follows that Y* and

S* have the following properties:

* *

(2.20) Y Is RCLL and non-decreasing with Y = 0 (k = O, 1, 2),

k k

(2.21) St M X t) + Y;(t - '0()

(2.22) S*1) = X*(t) + Y(t) - aY*(t) where a =2.

2 2 2 1 a

(2.23) 0 < S(t) < I and S(t) >0 ,
t

(2.2'i) ft S(u) dY*(u) =f t[1-s;*(u)3 dY*(u) =f 52*(u) dYu = 0s, 1 YOS2u2u
0 0 0

for all t > 0, where the Integrals In (2.24) are defined path-by-path In

the Lebesgue-Stieltjes sense. (These Integrals do not exist In the

Riemann-Stieltjes sense because, for example, S, and Yj jump

simultaneously.)

We have arrived at (2.20)-(2.24) as characterizations of processes

constructed previously, but these relationships can actually be used to

define Y* and S* in terms of X*. That is, with X* defined In terms

of the primitive sequences (ut) via (2.4), (2.9), (2.12) and (2.18),

there exists a unique pair of processes (Y*,S*) that jointly satisfy

(2.20)-(2.24). Thus (2.20)-(2.24) implicitly define an operator which maps

X* Into (Y*,S*). In the next section we use relationships analagous to

(2.20)-(2.24) to define a pair of processes (U,Z) In terms of a

K 9Ki



K two-dimensional standard Brownian motion W. Donsker's Theorem [2J tells

us that X* converges weakly to W as b * % and then the continuous

mapping theorem [2] can be used to show that

(X*, Y*, S*) = (W,U,Z) as b -

where => denotes weak convergence in a seven-fold product space. We

shall not go further into the convergence argument here, referring the

interested reader to Wenocur [7]. The remainder of this paper Is devoted

to construction and characterization of the diffusion limit Z.

3. The Limiting Diffusion Process

Let W(t) = [Wl(t), W2 (t)] be a two-dimensional standard Brownian

motion (independent components with zero shift and unit variance).

Defining a - 1/a as In (2.22), we wish to construct processes

U(t) = [U0(t), U1(t), U2(t)] and Z(t) = Z (t),Z2 (t)] which jointly

satisfy

4 (3.1) Uk is continuous and non-decreasing with Uk(O) = 0 (k : 0,1,2,),

(3.2) Zl(t) = Wl(t) + UM(t) - Uo(t) ,

(3.3 ) = W2(t M U 2(t) - aUJ1(t) P

(3.4) 0< ZM(t) < 1 and Z2(t) > 0,

10
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t t t
(3.5) f Zl(s) dUl(S) I [1-Z 1 (S)] dUO(s) f Z2 (s) dU2() 0

0 0 0

for t > 0. Condition (3.4) says that Z lives within the semi-infinite

strip E pictured In Figure 2. Obviously (3.5) requires that U1

increase only when Z1 = 0, that O0 increase only when Z= 1, and that

U2  Increase only when Z2 = 0. Conditions (3.2) and (3.3) determine the

direction In which Z Is driven upon hitting the boundary of E. On each

of the three boundary surfaces we have reflection in the (constant)

direction pictured in Figure 2 above.

For each (continuous) sample path W there is In fact a unique pair

of sample paths (U,Z) satisfying (3.1)-(3.5). The argument goes as

follows. If we delete all mention of U2 and Z. In (3.1)-(3.5), the

remaining conditions are those which define Z1  as a one-dimensional

standard Brownian motion restricted to [0,1] by reflecting barriers; U1

and U0  are increasing processes (local time processes) associated with

the lower boundary and upper boundary respectively. For a construction of

U0  and U1 In terms of W1  see §5 of (5]. With U0  and U1

determined, one may argue as In 12 of [3] that the remaining requirements

of (3.1)-(3.5) are uniquely satisfied by taking

(3.6) U2(t) = sup [-W2 (s) + aUlls)] , t > 00o<_ <set

This construction of (U,Z) from W is valid for any staring state W(O)

= (xlX 2) c E. Holding {W(t) - W(O), t > 0) fixed, it can be verified

that

11



- - . -- ; 4 , • - - - _ . -. . - . . . . . . . - , - .- o . .

(3.7) Z (t) and Z2 (t) are non-decreasing functions of both x

and x2  for all t > O.

Using an argument like that in 12 of [3], it follows that Z is a Markov

process, and we shall denote by Px(.) the distribution on the path

space of Z corresponding to initial state Z(O) a W(O) a x. From (3.6) we

have that

(3.8) Ft(x,y) Px{Z(t) < y} is non-increasing in both x, and

x2 for all t> 0 and y c E.

The process U satisfying (3.1)-(3.5) is non-anticipating with

respect to W. Thus Z is a continuous semimartingale, using the

filtration generated by W, and we can develop its analytical theory using

the multidimensional Ito Formula. For functions f R2  R that are

twice continuously differentiable, we define the differential operators

2 2
8 2
ID: 8x2

Defining the boundary surfaces

Sa ((xlX 2 ) £ 2 C = 1 ,

E1 a {(xl,x 2 ) £ E : x, 0) ,

and
E2  {(X 1 ,X 2) c : x2  0) ,

12



we observe that Dkf is the directional derivitive of f in the

direction of reflection associated with Ek (see Figure 2). The

following proposition is virtually Identical to Theorem 2 of [3], so we

shall not prove It.

(3.9) Proposition. If f : R2 + R Is twice continuously differentiable,

then for all X and t > 0

e f(Z(t)) = f(Z(O)) +f(Za)) d
= 0 5xk "

+ f e'X(X + 1 A) f(Z(s)) ds
0

2(s)) 

~k-- 00

Here the Integrals Involving dWk are of Ito type, while those Involving

dUk  are defined path by path in the Riemann-Stieltles sense.

(3.10) Proposition. E [UO(t)] ~ t, E(Ul(t) 1 t, and E [U2 (t)] ft
as t x e E).

Proof. Set X = 0 and f(x1 ,x2 ) = I In (3.9). Then (X+A)f = 0,

-D0f = D1f = 1, and D2 f = 0. Moreover, the Ito Integrals have zero expec-

tation, because their integrands are bounded. Thus, taking Ex  of both

sides, we obtain

(3.11) Ex[Zl(t)] = x1 + Ex[UI(t)] - Ex[U o(t)]

Similarly, by taking X = 0 and f(x) = x2 we have

13



Taking Ex  of both sides In (3.16), dividing by t and letting t . -

gives (3.14), thus completing the proof.

(3.17) Proposition. Let X > 0, a (0, /2) and p.> 0 be constants,

let f(x) : cos(d(1-Xl)) exp(px2), and define M(t) = exp(kt) f(Z(t)),

t > 0. If the constants ,, a, p simultaneously satisfy

(3.18) x + 1 2  0 ,

(3.19) sin a- ap os = 0,

then the stopped process {N(t A T), t > 0) is a supermartingale, where

(3.20) T = inf{t > 0 : Z2 lt). 0)

Remark. The stopped process is In fact a martingale, but we shall only

need the weaker property, and it Is slightly easier to prove.

Proof. First observe that

(3.21) Dof(,x 2  0 ,

regardless of how X, a and P are chosen, and that (3.18) and (3.19)

Imply

(3.22) (k + A) f(X 1, X2) =0 ,

and

(3.23) DIf(O,x2 ) = 0

15



respectively. Combining (3.21)-(3.23) with the fact that U2(T) = 0, we

see that all terms on the right side of (3.9) except for the Ito integrals

are zero, provided t < T. Thus {M(t A T)} is a local martingale. But

f is a positive function, hence N is a positive process, and a positive

local martingale is a supermartingale (Fatou's Lemma). This completes the

proof.

(3.24) Propositon. Ex(T) <- for all x c E, where (3.20) defines T.

Proof. First we show that there exist constants X > 0, U C (0, 9/2) and

> 0 satisfying (3.18) and (3.19). Obviously (3.19) Is equivalent to

(3.25) p=-tan aa

Substituting this Into (3.19), we arrive at the requirement that

(3.26) a() 1 - a"2 tan2 a=2) .

It can be verified that #(0) = O, #'(0) > 0, and #(a) + -- as a + x/2,

so there exists a e (0, %/2) satisfying (3.26) If X > 0 Is chosen small

enough. Choosing 0 according to (3.25), we then have a triple (,aP)

satisfying the hypotheses of Proposition (3.17). Thus M(t A T) Is a

supermartingale, meaning that Ex[M(O)] > E[M(t A T)], which is

equivalent to

E ~~x~,(t ̂ T) EeX(t AT)].
(3.27) f(x) > E [e f(Z(t A T))] > E [e A os

q Letting t + * In (3.27) gives

16



(3.28) Ex(eXT) < f(x)/cos a

)which of course implies EX(T) <- as desired.

4. The Analytical Problem

Hereafter It will be assumed that W(O) = Z(O) = O, and the symbols

Plo) and E(o) will be understood to mean Po() and EO(O)

respectively. Similarly, recalling the notation Ft(xy) P {Z(t) < y},

let us agree to write

(4.1) Ft(y) P(Z(t) < y} = Ft(O9y)

Because the origin is the least element of our strip E (under the usual

partial ordering), It follows from the monotonicity property (3.8) that

Z(t) is stochastically Increasing In t, meaning that Ft(y) Is a

non-increasing function of t for each y c E. Consequently,

,i(4.2) F(y) --lim Ft(y)

t.

exists, and It follows from Proposition (3.24) that F must furthermore be

a non-defective distribution function. Our objective Is to compute the

marginal distribution

(4.3) C1Q) - F(1,g) u lim P(Z2 1t) < V} , > 0

t,.

Incidentally, there is an elegant coupling argument which shows that

Ft(x,y) + F(y) as t * - for all starting states x E., but we shall

have no need for this fact. (The key observation Is that If two sample

17



paths of W have different starting states but Identical increments, then

the corresponding paths of Z will interesect at some finite time T and

be identical thereafter.)

We now want to derive an analytical characterization of the

steady-state distribution F. A useful first step Is to define the

functions

t

(4.)E[ dU( W] t > 0
1 . 0 {tl(s) Zdlslsu , t 0

Obviously, Ht;(.) Is Increasing with Ht(m) = 2E[Ul(t)]/t, which one

can easily show to be finite. Proposition (3.10) shows that Ht(-) * 1

as t.-.

(4.5) Proposition. Ht =0 H as t m -, where H Is a distribution

function on [0,.-) with

(4.6) u Hdu) - [1 Hlu)] du
0 0

Furthermore,

,
(4.7) G() = a f 1 - H(u)]du

0

Proof. It will be useful to define the distribution functions

(4.8) t() p(z 2(t) < C). Ft(1,) , C > 0

q

16
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Let a > 0 be arbitrary, put Into (3.9) the test function f(xlx 2 ) =

exp(-ax2), and take EC) of both sides. The Ito Integrals have zero

expectation (integrands are bounded), Dof = O, Dlf - aaf, D2f(x 1,O) = -4,

and Af = a2f, so we have

(4.9) [e ] = 1 + 7 a E[ e s]
0

t -a Z2(s)
+ aE[f dUJ(s)]- aEU(t)]

0

Set Ce() - ] e ' °  t Ct(de)' and let other Laplace transforms be

denoted similarly. Since Gt =0 C, the continuity theorem gives

1 t -az (s) I 1 E[e-Mz 2 ( s ) ] d
(4.10) E[fe ds] = d

0 to

tI C (a) ds.+C(a) a
0

Of course

(.11) E[U2(0 + a as t o

by (3.10), and a monotone class argument gives

(t.12)E Z2 (s) d( s e l  Ht(dC) = H(s)o 0 1 oto,.)

Dividing (4.9) through by t, letting t + w, and using (4.10)-(4.13), we

obtain H (a) + I - a C*( )Ia as t .m- Thus H t => H, where H Is an

increasing function whose Laplace transform is related to that of C via

I, 19



~a

(4.13) G*(a) D H~(

Since C is a distribution function it follows from (4.13) that H is

also a distribution function with mean given by (4.6). Finally, (4.13) is

the transform version of (1.7), so the proof is complete.

For the next proposition, we want to insert In the Ito Formula (3.9)

test functions f : E * R such that

(4.1') f is twice continuously differentiable, with bounded first

and second-order partials on E, and Dof(1,x 2) :

D2f(x1,O) - 0.

(1.15) Proposition. If f satisfies (4.14) then

('1.16) 0 Z fEfx ~x D~f(Opu) H(du)
f. f,0 ,,oFd

Proof. Set X = 0 In (3.9) and take E(.) of both sides. The Ito

integrals have zero expectation (bounded integrands), and Df(llx 2) =

0 2 tMx1 ,0) u 0 by hypothesis, so we obtain
I2

q 20



Since vk concentrates all of Its Mass on Ek by (3.5), we can

rewrite (4.18) as

2
(4.20) 0 =f A Afg(x) F(dx) + )f D f(o) vk(da)

S k=O£k

and (3.10) shows tht vO(E O) 0 v1 (E1) - 1/2 and v2 (£ 2 ) = a/2. Obviously,

(4.15) specializes (4.20) to test functions f of the class (4.14), with

H(u) 2vl[O,u]. For more on adjoint relations like (4.20) see 59 of

[A].

5. The Steady-State Distribution

By putting a well chosen test function f Into the adjoint relation

(4.15), we can determine the steady-state boundary distribution H defined

by (4.4)-(4.5). Let

(5.1) *(z) (.) e zu H(du) Im(z) > 0

(5.1) *"z1 [0. e-ZUH(du) IM(z) > 0 ,

(5.3) Proposition. *+  and #- are bounded, analytic In the upper

half-plane and lower-half plane respectively, and satisfy

22
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(5.4)(z) aoshz-isnhz for z real

*+(z) = a cosh z + I sinh z

Proof. The boundedness and analyticity follow immediately from the

definitions (5.1), (5.2). To prove (5.4), let z e R be arbitrary and

define

f(x) cosh izx2 cosh z(1-x 1 ) , for x £ E

It Is easy to verify that f satisfies all the restrictions of (4.14),

plus Af = 0, so (4.15) gives us

(5.5) 0 = f DIf(O,u) H(du)

(This Is actually a pair of identities, one for the real part of Dlf

and one for the imaginary part, but we shall continue to use the efficient

notation of complex variables.) Now direct computation gives

(5.6) D-f(Ou) a a I f(0,u)

1 x2

- z sinh z cosh izu - aiz cosh z sinh lzu

= z[(sinh z + al cosh z) ezu + (sinh z - al 03h z) e

iz[(a cosh z + I sinh z) e-izu - (a cosh z - I sinh z) •izu]

Substituting (5.6) Into'(5.5) and dividing In the obvious way gives the

desired Identity (5.4).

23



*1

Using the identity r(a) r(-a) = 9/sin(xa), we divide (5.11) by (5.10) to

obtain

4-(z__) sin(O-iz)
(5.12) + sn(+z) "

Expanding the sines on the right side of (5.12), we find that (5.4) holds

with (4,+,4,) in place of (#+,t") Furthermore, p is positive and

Integrable on (0,.), so (.+,-') have all the properties ascribed to

(*+,*') In Proposition (5.3).

(5.13) Proposition. #+(z) = c4,+(z), where c is defined by (1.2). Thus

H(du) = cp(u)du.

Proof. Let k(z) = *+(z)/4+(z) for Iu(z) > 0, k(z) = *'(z)/*'(z) for

Im(z) < 0. These two definitions agree for real z because (* ,," and

S(, ')4 both satisfy (5.4). Recall that the r function has no zeros,

and its singularities are poles on the negative real axis, cf. 6.1.3 of

Abramowitz and Stegun [1]. From this and the analyticity of # , #-, 41,

4s- on their respective half planes, it follows that k(z) is an entire

function of z. Further,

(5.1*) r(z+a) zb'a/T(zb) . 1

as jzj * *, z * -a-n or -b-n (n = 0, 1, ... ), Cf. 6.1.4 of Abramowitz

and Stegun [1]. From (5.10) and (5.11) we then have

(5.15) 14+(Z) ,! z 1 .I , Im(Z) > 0,

25



(5.16) IiFIz)l z I I12e1 as Iz1 . ", I0(z) < 0

for some constant y > O. Since + and are bounded in their

respective half-planes, it follows that

(5.17) Ik(z)I< AlzlI(" /% as IZ' "

for some constant A > 0. Since 0 < 1-20/,x < , it follows from (5.17)

and Liouville's Theorem that such an entire function k(z) is a constant.

So *+(z) = c4p+(z) for some c > 0. Of course *+(0) = 1 by definition

(W' Is the characteristic function of a probability distribution), so It

must be that c = 1/4+(0), so (5.10) shows that c Is given by (1.2) as

claimed. This proves the first statement of the proposition, and the

second follows from the continuity theorem for characteristic functions.

The preceeding argument gives no hint of the means originally used to

calculate p, which was roughly the following. First the right side of

(5.4) was factored into products of zeros, using the Hadamard product

formulas for the numerator and denominator Individually. The Individual

factors were allocated to +  and 4- so as to insure analyticity in the

upper half-plane and lower half-plane respectively, and then the Euler

product for r was used to obtain (5.10) and (5.11). Finally, a partial

fraction decomposition and sum revealed that e Is the characteristic

function of the density p defined by (1.3).

To obtain the final formula for C stated earlier as Theorem (1.4),

one simply ombines (5.13) and (4.7). The equivalent Laplace transform

solution (1.5) is obtained by combining (4.13), (5.13) and (5.10).
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and it jumps upon hitting the boundary. If the boundary is hit at a point

(x,1), then there is an instantaneous jump to the point (x-ae sgn x, 1-e),

after which the Brownian movement resumes. If the boundary is hit at

(x# -1), then the JUmp is to (x-ae sgn x, -l+:). Let Tn  be the nth

time at which the boundary is hit, and set Xn = X(Tn). We claim that

(Xn) is a Markov chain, that it has a unique stationary distribution, and

that the stationary distribution of IXnI converges weakly to the boundary

distribution H of 14 as C + 0. We shall make no attempt to Justify any

of these claims, hoping that the symmetry apparent In Figure 3 makes them

at least plausible.

Hereafter assume that the initial state of (X,Y) is distributed

randomly over the boundary of the strip according to the stationary

distribution of (Xn). Then the transition mechanism for our stationary

Narkov chain {Xn } can be expressed as

(6.1) Xn 1 = Xn - ae sgnX n

where Cn+1 Is the increment of Brownian movement (in the X direction)

between consecutive hittings of the boundary. Defining

(6.2) C (z) E[exp(izXn)] ,

!I
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. - . I . - . • . . - .- , - - , . . . . , . , . . . . , . . . • " . . ." . .... ., - . .

(6.3) ,9(z) s E[exp(lzgn+l] ,

we have from (6.1) that

(6.4) #C(z) = +C(z) E(exp[lz(Xn - ac sgn Xn)]}

because {Xn ) is stationary and Cn+1 Is Independent of Xn  (using

the spatial homogeneity of Brownian motion). Next, using the fact that

Mt) exp(lz X(t) + zYlt)} , t> ,

is a martingale for arbitrary complex z, one can easily derive the formula

(6.5) *¢(z) = cosh(z(l-c))/cosh z

Now defining

(6.6) #+(z) E [EexpizIXnI)] '

(6.7) #;(z) = E[exp(izIXnI)] ,

symmetry and (6.2) give us

(6.8) *lz) = #(z) +-7 #;(Z)

(6.9) Eexp~iz(Xn- a sgn n

I + -izae I - IzacW e. - , 'I #;(z) e

Substituting (6.5), (6.8) and (6.9) Into (6.4) and simplifying, we obtain
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(6.10) - cosh z -e(izae) cosh(z(l-e))+(Z) cosh z -exp(izae) coah(z(1-e)

Let #*(z) and #-(z) be defined In terms of H as in 15. If the

stationary distribution of IXrnI converges weakly to H as e + 0, as

claimed earlier, then of course #*(Z) + #+(Z) and #;(z) + *(Z) a's

e + 0. Assuming the weak convergence, we may then let e + 0 In (6.10) to

obtain (5.4).
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We consider a two-dimensional diffusion, rocess Zlt) =

[23(t),x(t)] that lives in the half strip (0 4 (-1 < 1, 0 Z < 46). On

the Interior of this state space, Z behaves like a standard Brownian

motion (indpendent components with zero drift and unit variance), and there

is instantaneous reflection at the boundary. The reflection Is in a Z "

direction normal to the boundary at aZI a 1 and = 0, but at 0

the reflection is at an angle J1 below the normal (0 <)S < 12).

This process Z is shown to arise as the diffusion limit of a certain

tandem storage or queueing system. It is shown that Z(t) has a

non-defective licit distribution F as t * A, and the marginal

distributions of f are computed explicitly. The marginal limit

distribution for 1 is uniform (this result is essentially trivial),

but that for ~2 is much more complicated.
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